An End-to-End Trainable Neural Network Model with Belief Tracking for Task-Oriented Dialog

Bing Liu, Ian Lane Carnegie Mellon University *liubing@cmu.edu, lane@cmu.edu*

Outline

- Background & Motivation
- Proposed Method
- Experiments & Results
- Conclusions

Task-Oriented Spoken Dialogue Systems

- Unlike open domain chit-chat type of dialogs, task-oriented dialog systems enable user to perform everyday tasks in specific domains.
- Tracking dialogue state overall multiple turns, asking questions to clarify a user request, grounding with information from external resources, etc.
- Current systems are highly handcrafted, using pipeline approach with connected modules for SLU, DST, Policy, and NLG.

Limitations of Current Approach

- Lack of flexibility
 - Module input depends on preceding module outputs
- Credit assignment problem
 - Error propagates from upstream to downstream system modules

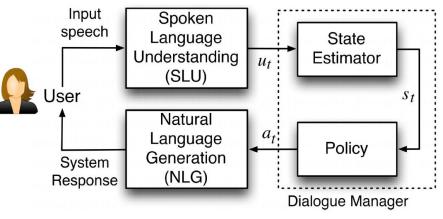


Figure from "Li Deng at AI Frontiers: Three Generations of Spoken Dialogue Systems"

- Misaligned optimization targets
 - Each system modules (SLU, DST, Policy) has its own optimization target, which may not directly aligned with final system optimization criteria (e.g. task success rate, etc.)

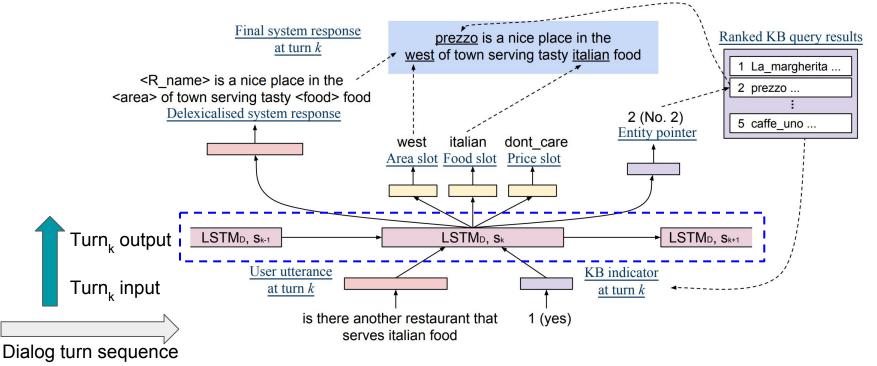
Motivation

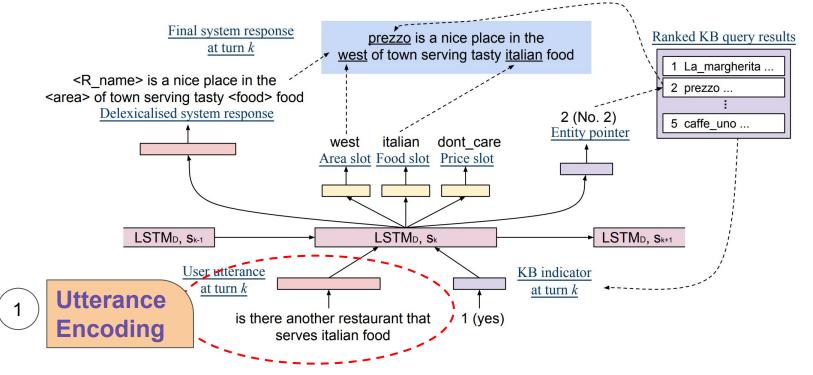
Can we design an end-to-end trainable system with an unified model for dialogue state tracking, knowledge base (KB) operation, and response generation?

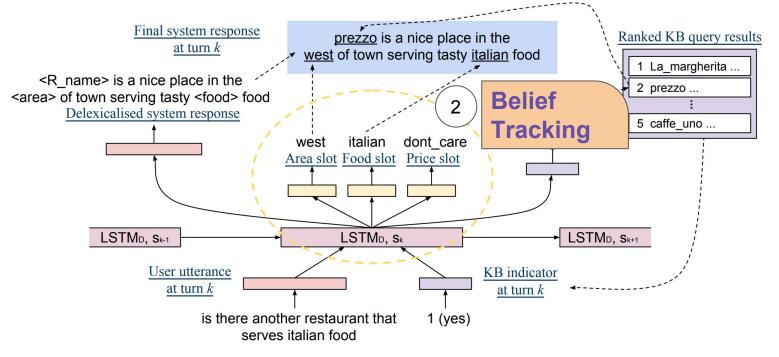
- Fully explore knowledge that can be shared among different components
- Optimization can be made towards the final objective in an end-to-end fashion

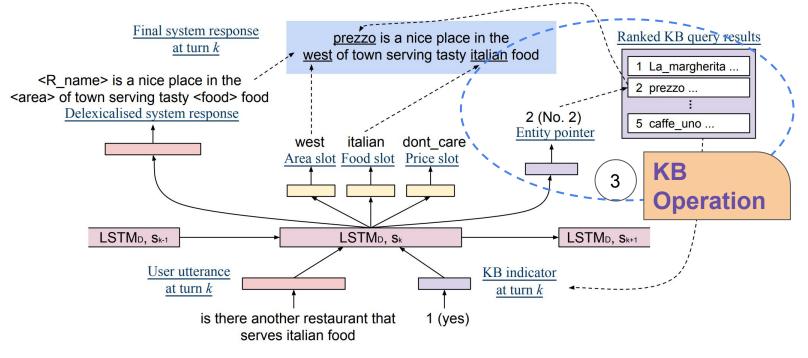
Outline

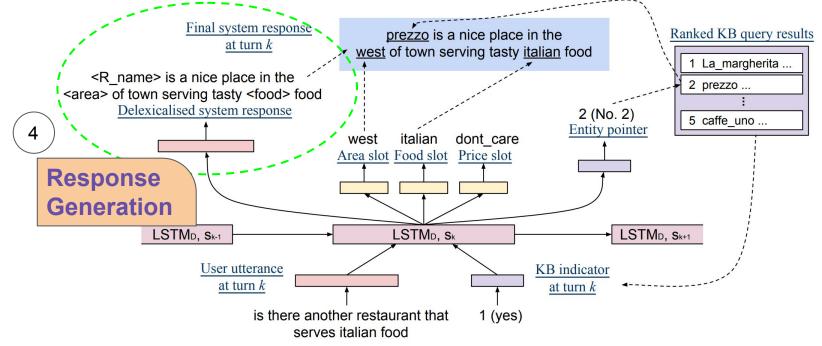
- Background & Motivation
- Proposed Method
- Experiments & Results
- Conclusions





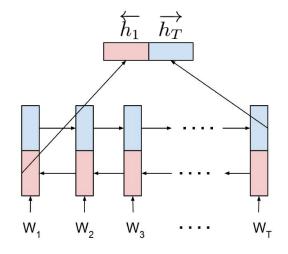






1. Utterance Encoding

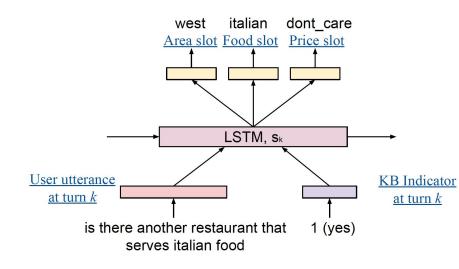
• Utterance encoding with bidirectional LSTM



$$U_k = [\overrightarrow{h_{T_k}^{U_k}}, \overleftarrow{h_1^{U_k}}]$$

2. Belief Tracking

• Belief tracking with hierarchical LSTM



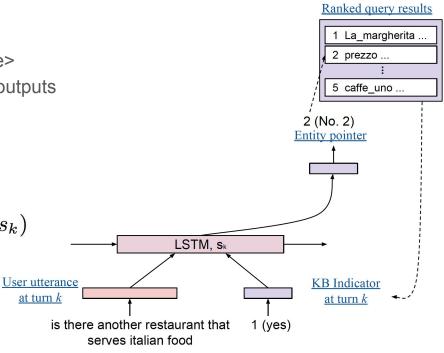
$$s_k = \text{LSTM}_{D}(s_{k-1}, [U_k, I_k])$$

 $P(S_k^m \mid \mathbf{U}_{\leq k}, \mathbf{I}_{\leq k}) = \text{SlotDist}_m(s_k)$

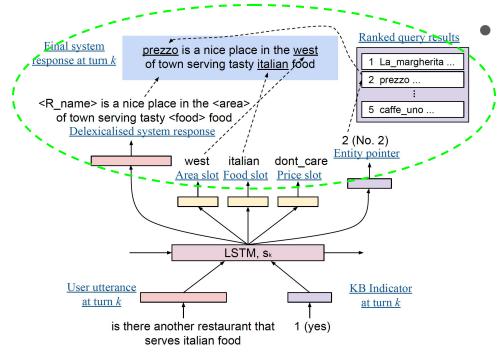
3. KB Operation

- Issuing API Calls
 - E.g. api_call <area> <food> <pricerange>
 - Fill slots with values from belief tracker outputs
- KB Results Processing
 - KB results as a list of structured entities
 - Emits an entity pointer

 $P(E_k \mid \mathbf{U}_{\leq k}, \mathbf{I}_{\leq k}) = \text{EntityPointerDist}(s_k)$



4. Response Generation



Response generation

Ο

- Select a delexicalised response template
 - Final system response generated by replacing slot tokens with values from belief tracker outputs and KB query results

 $P(R_k \mid \mathbf{U}_{\leq k}, \mathbf{I}_{\leq k}) = \text{ResponseDist}(s_k)$

Alternative Model Designs

Hierarchical LSTM

- + feed de-lex res (1)
- + feed goal slots (2)

+ feed both (3)

(2)

- Feed previous emitted system response template back to dialog-level LSTM state
- Feed previous emitted slot values back to dialog-level LSTM state
- (3) Feed *both* back to dialog-level LSTM state

Model Training

• Linear interpolation of multi-task cross-entropy losses

$$\begin{split} \min_{\theta} \sum_{k=1}^{K} - \left[\sum_{m=1}^{M} \lambda_{S^{m}} \log P(S_{k}^{m*} \mid \mathbf{U}_{\leq k}, \mathbf{I}_{\leq k}; \theta) & \longrightarrow \text{ Belief Tracking Losses} \\ &+ \lambda_{E} \log P(E_{k}^{*} \mid \mathbf{U}_{\leq k}, \mathbf{I}_{\leq k}; \theta) & \longrightarrow \text{ KB Operation Loss} \\ &+ \lambda_{R} \log P(R_{k}^{*} \mid \mathbf{U}_{\leq k}, \mathbf{I}_{\leq k}; \theta) & \longrightarrow \text{ Response Prediction Loss} \end{split}$$

Outline

- Background & Motivation
- Proposed Method
- Experiments & Results
- Conclusions

Dataset

- Converted from DSTC2 corpus [1]
- Added (a) API calls to KB, & (b) KB query results, as in [2]
- Evaluation is on accuracy for belief tracking, entity pointer prediction, response matching (delexicalised & final)

Num of train & dev / test dialogs	2118 / 1117
Num of turns per dialog in average	7.9
(including API call commands)	
Num of area / food / pricerange options	5/91/3
Num of delexicalised response candidates	78

[1] M. Henderson, B. Thomson, and J. Williams, "The second dialog state tracking challenge," in SIGDIAL, 2014. [2] A. Bordes and J. Weston, "Learning End-to-End Goal-Oriented Dialog," in ICLR, 2017.

Model Configuration and Training

- Word embedding size = 300
- Utterance-level LSTM state size = 150
- Dialog-level LSTM state size = 200

- Mini-batch training: batch size = 32
- Optimizer: Adam, initial learning rate = 1e-3
- Dropout: on non-recurrent connections, keep prob = 0.5
- Gradient clipping: 5

On different utterance encoding methods

- Bi-LSTM > BoW Emb
- Semantic similarities of words captured in the pre-trained word vectors are helpful in generating a better representation of user input

Model	Entity Pointer	Joint Goal	De-lex Res	Final Res
BoW Emb Encoder	93.5	72.6	55.4	51.2
+ word2vec	93.6	74.3	55.9	51.5
Bi-LSTM Encoder	93.8	77.2	55.8	52.6
+ word2vec	94.4	76.6	56.6	52.8

On different model designs

- Contrary to our intuition, feeding previous system output did not help.
- Reason: data sparsity issue of the dataset \rightarrow model overfits training set

Model	Entity Pointer	Joint Goal	De-lex Res	Final Res
Hierarchical LSTM	94.4	76.6	56.6	52.8
+ feed de-lex res (1)	93.6	74.8	55.4	51.8
+ feed goal slots (2)	94.1	75.3	55.3	51.8
+ feed both (3)	93.7	72.7	55.3	51.6

Comparing to other models on **belief tracking**

• Used live ASR hypothesis as model input.

	Area	Food	Price	Joint
Model	Goal	Goal	Goal	Goal
RNN	92	86	86	69
RNN + sem. dict	91	86	93	73
NBT-DNN (Mrkšić et al., 2016)	90	84	94	72
NBT-CNN (Mrkšić et al., 2016)	90	83	93	72
Hierarchical LSTM	90	84	93	73

Comparing to other models on generating system response

• Follow the per-response accuracy metric used in prior work

Model	Per-res Accuracy
Memory Networks (Bordes and Weston, 2016)	41.1
Gated Memory Networks (Perez and Liu, 2016)	48.7
Sequence-to-Sequence (Eric and Manning, 2017)	48.0
Query-Reduction Networks (Seo et al., 2017)	51.1
Hierarchical LSTM	52.8

User Study

- Small scale user study with 10 users
- Feedback on appropriateness of the system responses
 - $\circ \quad 52.8\% \rightarrow 73.6\%$
- Per-response accuracy metric may not well correlate with human judgments
- Better dialogs evaluation measurements should to be further explored

Outline

- Background & Motivation
- Proposed Method
- Experiments & Results
- Conclusions

Conclusions

- A novel end-to-end trainable neural network model for task-oriented dialog
- System is capable of tracking dialog state, interfacing with KB by issuing API calls, and incorporating query results into system responses to successfully complete task-oriented dialogs
- Robust performance in belief tracking and system response prediction.
- Next step: end-to-end reinforcement learning for task-oriented dialogs (in submission)

Thanks & Questions