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Dialog Systems

% Dialog system, or conversational agent, is a class of intelligent
system that interacts with users in natural language form via
speech or text.

Personal assistants (e.g. Amazon Alexa, Google Assistant, Apple Siri, etc.)
Voice command in vehicle and smart home

Customer service
Chat for entertainment
Psychotherapy
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Dialog Systems

% Task-Oriented Dialog System

> Chat to complete tasks

> Usually with a user goal in a
specific task domain, e.g. movie
search, flight booking

«» Chit-Chat Bot

> Designed for casual chat,
entertainment, and companionship

> Open domain, usually does not
focus on a particular task
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Current Dialog System Architecture
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Thesis Statement

Can we learn task-oriented dialog system
effectively through with users?
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Overview of Proposed Learning Framework
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Challenges / Research Questions

% Learn End-to-End Dialog from Corpora

> How to understand user’s natural language request? !
i (Interspeech 2016, SIGDIAL 2016, NIPS Workshop 2017)
! > How to reason over long-term dialog context and model i
! task-oriented dialog end-to-end? (/nterspeech 2017) i

< Learn from Real Interactions % Learn from Interactions

i > How to learn interactively from > How to model user dynamics, and how to
! human teaching and corrections? train the user model iteratively with the

! (NAACL 2018a) | dialog agent? (in progress)

i > How to learn interactively from ! > How to learn by integrating real and

i human feedback? (NIPS Workshop simulated experiences? (in progress)

i 2017, AAAI 2018, NAACL 2018b)
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Proposed Dialog Learning Methods

% Learning End-to-End Task-Oriented Dialog via User
Interaction

% Learning from Simulated Experiences
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Task-Oriented Dialog Modeling

% Goal: Design a system that takes actions in order to complete a
task with users and maximize user satisfaction.

% Sequential Decision Making problem:

> State: Dialog context «<— Modeled with hierarchical LSTM
> Action: System prompt or response «— Policy network

> Reward: Task completion « User feedback and/or Adversarial Reward

X/
A X4

Hybrid Learning Strategy:

> Supervised pre-training on dialog corpora
> Interactive learning with human-in-the-loop
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End-to-End Task-Oriented Dialog Modeling
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End-to-End Task-Oriented Dialog Modeling

End-to-End Modeling of
SLU, DST, and Dialog Policy
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Dialog Learning with Human-in-the-loop

% Supervised pre-training + Interactive learning with user feedback

Supervised
Pre-training ) |

Human-Human
Dialog Corpora

Supervised training objective: linear

interpolation of cross-entropy losses: Interactive learning with RL:

@ User goal estimation, and A Binary feedback as dialog reward
O  System action prediction d EZ2E optimization with REINFORCE
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System Evaluation

7

% Interactive evaluation in a movie booking task domain!"!

Task Success Rate over Time (smoothed . .
07 ( ) SL:  Supervised learning model

IL: Imitation learning with human teaching
RL: Reinforcement learning with feedback

o
o

Table: Human evaluation results. Mean and
standard deviation of crowd worker scores (1-5)

Task Success Rate
o
(O]

0.4 SL Baseline Model Score
@ SL+RL
' il SL 3.987 £ 0.086
0.3 —%— SL + IL 1000 + RL SL + IL 1000 4.378 +0.082
0 2000 4000 6000 8000 10000 SL + 1L 1000 + RL | 4.603 £ 0.067

Interactive Dialogue Learning Sessions

[1] Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth Shah, and Larry Heck, "Dialogue Learning with Human Teaching and Feedback in
End-To-End Trainable Task-Oriented Dialogue Systems", in NAACL 2018.
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End-to-End Model Optimization with RL

s Experimental results on task success rate
0.60 Task Success Rate over Time (smoothed) SL:  Supervised learning model
- RL: Reinforcement learning with feedback
3
£ 0.50
a
g 0.45
@
¥ 0.40
©
= 0.35 SL Baseline
-@- SL + policy-only RL
0.30 -@- SL + end-to-end RL

0 2000 4000 6000 8000 10000
Interactive Dialogue Learning Sessions

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth Shah, and Larry Heck, "Dialogue Learning with Human Teaching and Feedback in End-To-End
Trainable Task-Oriented Dialogue Systems", in NAACL 2018.
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End-to-End Model Optimization with RL

Interactive dialog learning with
human-in-the-loop and end-to-end system
optimization can effectively improve task

success rate and human user ratings.
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Proposed Dialog Learning Methods

% Learning End-to-End Task-Oriented Dialog via User
Interaction

% Learning from Simulated Experiences

> Modeling user dynamics

> Co-training of dialog agent and modeled user
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User Modeling

% Querying (i.e. interacting with) human user for dialog model training
can be slow and inefficient.

< Previous works use rule-based user

simulator — Fixed and can quickly become a e Agent
bottleneck for dialog agent training. Agent.| - Estimated
;tﬁte R@qud
/ N\
g . . . . 7—|  Agent
* Building a reliable user model is not trivial, | il
often as difficult as building a dialog agent. Obsenvatioh User | brpora
‘\ Modeled U In )
Our Solution — Learn a basic user model, and "\ (nsgents mne) [
continuously to improve it with the dialog agent o
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lteratively Optimizing Dialog Agent and Modeled User
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Integrated Learning from Real and Simulated Interactions

% Learning from real dialogs by querying users is slow and sample inefficient
% Learning from simulated interactions is limited by the modeled user capacity

Solution — Integrated learning from real and simulated experiences
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Conclusions

% We present an end-to-end trainable system for task-oriented dialogs.

% We design a hybrid learning framework with:

> Offline learning from fixed dialog corpora
> Interactive learning from human demonstration and feedback

s We propose an integrated learning strategy by learning from both real
and simulated experiences.
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Thanks!
Q&A
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