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Abstract

¢ This work focuses on interactive learning of task-oriented
dialogue systems.

** Learning dialogue policy online from scratch with
reinforcement learning (RL) requires a large number of
interactive learning sessions with users.

*» People thus often pre-train the dialogue agent using
dialogue corpora before doing online interactive learning.

¢ Model with such pre-training may suffer from the
mismatch of dialogue state distribution between offline
supervised training and online interactive learning:

» Agent’s response at each turn has a direct influence on
the distribution of dialogue state during user interaction

» A small mistake from the agent may lead to compound-
ing errors 1n dialogue due to this covariate shift

“* We propose a hybrid imitation and RL method with human
teaching and feedback 1n addressing this challenge.

% The proposed neural dialogue model can be optimized end-
to-end for natural language understanding, dialogue state
tracking, and dialogue policy learning.
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Table 2: Belief tracking results on movie booking dataset
Figure 1. Proposed end-to-end task-oriented dialogue model architecture.

Model Num_ticket Movie Theater Date Time Joint
Our end-to-end model 08.22 01.86 97.33 9931 97.71 84.57

¢ Utterance Encoding

» Bidirectional LSTM utterance reader: Uy = [h%’j  hi*]
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Model Training

“* Supervised Pre-training
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¢ Imitation Learning with Human Teaching

1) Run the current policy m4(a|s) with user to collect new dialogue samples D,
2) Ask user to correct the agent’s mistakes in user goal estimation for each dialogue turn in D_
3) Add the corrected dialogue samples to the existing corpora: D «— D U D _ |

policy-only optimizations. RL: Reinforcement Learning with human feedback
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%X Driven by the
agent’s own policy Conclusions

4) Train model end-to-end on D with MLE and obtain an updated policy 4(a|s); back to 1) lHuman-Hum sL - * In this work, ,We focqs on training ta.sk—oriented di.a logue systems
on Dielog || s B, < > through user 1ntere.tct10ns, where a dlglogue agent Improves through
% Reinforcement Learning with Human Feedback e & communicating with users and learning from the mistake it makes.
1. Run the current policy m4(a|s) with user for a new dialogue and collect user’s feedback <» We show that our neural dialogue agent can effectively learn from user
11. Train model end-to-end with REINFORCE and obtain an updated policy; back to 1) . u teaching with the proposed imitation learning method. Learning with RL

VQJk(Q) — VQEQ [Rk] — E@a [V@ log w@(ak|3k)Rk]

Provide feedback for on user feedback after IL improves the model performance further.
RL optimization




