Multi-Domain Adversarial Learning for Slot Filling in Spoken Language Understanding

Bing Liu, Ian Lane Carnegie Mellon University liubing@cmu.edu, lane@cmu.edu

Spoken Language Understanding (SLU)

• SLU is a critical component in spoken dialog systems

SLU Tasks

- 1. Domain Classification
- 2. Intent Determination
- 3. Slot Filling

User Utterance:

Show me flights from <u>Pittsburgh</u> to <u>Long Beach</u> on <u>Sunday</u>

SLU Outputs:

Domain: Air_Travel Intent: Show_Flight

Slots: Slots: Slots: Leparture_City: Pittsburgh Departure_Date: Sunday Departure_Time: <to_be_filled> Destination_City: Long Beach ...

Slot Filling in SLU

Slot filling as a sequence labeling problem

Utterance	Flights	from	Pittsburgh	to	Long	Beach	on	Sunday
Slot Label	0	0	B-Dept_city	0	B-Dest_city	I-Dest_city	0	B-Dept_date

Solution Given an utterance $\mathbf{w} = (w_1, w_2, \dots, w_T)$, find the best sequence of slot labels $\mathbf{y} = (y_1, y_2, \dots, y_T)$, one for each word in the utterance, such that:

$$\hat{\mathbf{y}} = \arg\max_{\mathbf{y}} P(\mathbf{y}|\mathbf{w}, \theta)$$

> Popular methods for slot filling: MEMM, CRF, RNNs.

Current Slot Filling Models

- Current slot filling models are mostly domain-specific
 - Trained and work on individual task domains.
- Hard to transfer knowledge across domains for slot filling
- Costly in annotating semantic tags for each new task domain

Motivations

Can we learn common features and representations that can be shared across multiple domains for slot filling in SLU?

- Benefits:
 - > Reduce the amount of annotated data required for developing a new domain
 - Improve slot filling performance with an ensemble of domain-general and domain-specific models

Learning Shared Representations

- Naive approach: train a single slot filling model directly on a union of the data from all domains
 - May still learn disjoint domain-specific features due to the very different data distributions in different domains
- Good common representations across domains are the ones based on which a system cannot recover the domain of the original inputs^[1]
- Our proposal: Apply domain adversarial learning in training the domain-general slot filling model

[1] Ben-David, Shai, et al. "A theory of learning from different domains." *Machine learning* 79.1 (2010): 151-175.

Proposed Method

- Model slot filling with bidirectional LSTM (bi-LSTM)
- Train domain-general model using a union of data from all domains, with an additional domain adversarial loss
 - Enforce the bi-LSTM model to learn common representations across domains to "fool" a domain classifier
- Train domain-specific models using individual domain data
- Combine domain-general and domain-specific models at output layer via a multi-layer perceptron (MLP) for slot filling

Domain Adversarial Training

9

Domain Adversarial Training

Model Parameters:

- > Slot filling output MLP: θ_y
- > Domain classification output MLP: θ_d
- > Word embedding & bi-LSTM: θ_s

Losses:

➤ Slot Filling Loss:

$$\min_{\theta_s, \theta_y} L_y = \min_{\theta_s, \theta_y} -\frac{1}{T} \sum_{t=0}^T \log P(y_t^* | \mathbf{w}; \theta_s, \theta_y)$$

 $L = L_u + \lambda L_d$

Domain Adversarial Loss:

$$\max_{\theta_s} \min_{\theta_d} L_d = \max_{\theta_s} \min_{\theta_d} -\log P(d^* | \mathbf{w}; \theta_s, \theta_d)$$

Total Loss:

Joint Model Training

11

Experiments

Data sets

- > ATIS (Airline Travel Information Systems): Air travel query
- MIT Restaurant Corpus¹: Restaurant query and search
- MIT Movie Corpus (eng & trivia10k13): Movie query and search

Datasets	ATIS	MIT Rest.	MIT Mov. eng	MIT Mov. trivia10k13	Combined
Train set size	4978	7660	9775	7816	30229
Test set size	893	1521	2443	1953	6810
Vocab size	572	4166	7481	12145	16049
Slot label size	127	17	25	25	191

¹The MIT SLU corpora can be downloaded from: <u>https://groups.csail.mit.edu/sls/downloads</u>

Experiments

Training Settings

- LSTM state and output size: 128
- Output layer MLP size: 200
- ➢ Word embedding size: 128
 - Randomly initialized and fine tuned
- > Dropout: p = 0.5
- Optimizer: Adam (initial learning rate = 1e-03)

Evaluation Metrics

Slot filling F1 score (harmonic mean of precision and recall)

Experiment Results

 Domain-specific and domain-general model performance, comparing to published results

Model	ATIS	MIT Rest.	MIT Mov. eng	MIT Mov. trivia10k13	Comb.
Deep LSTM [16]	95.08	-	-	_	-
RNN-EM [17]	95.25	-	-	-	-
Encoder-labeler LSTM [18]	95.40	-	-	-	74.41
Attention Bi-LSTM [6]	95.75	-	-	-	-
BLSTM-LSTM (focus) [19]	95.79	-	_	-	-
Dom-Spec	95.55	72.42	83.43	63.64	-
Dom-Gen	94.09	74.25	82.95	63.34	76.03

* Dom-Spec: domain-specific Bi-LSTM

* Dom-Gen: domain-general Bi-LSTM (without adversarial learning)

Experiment Results

Joint domain-specific and domain-general model performance

Model	ATIS	MIT Rest.	MIT Mov. eng	MIT Mov. trivia10k13	Comb.
Dom-Spec	95.55	72.42	83.43	63.64	-
Dom-Gen Dom-Gen-Adv (λ =0.01) Dom-Gen-Adv (λ =0.1) Dom-Gen-Adv (λ =1.0)	94.09 94.51 93.88 84.65	74.25 73.87 73.98 62.47	82.95 83.03 82.31 75.05	63.34 63.51 62.83 52.82	76.03 76.55 76.01 66.66
Joint Dom Spec & Gen Joint Dom Spec & Gen-Adv (λ =0.01) Joint Dom Spec & Gen-Adv (λ =0.1) Joint Dom Spec & Gen-Adv (λ =1.0)	95.62 95.63 95.52 95.52	74.47 74.23 74.36 73.57	84.87 85.33 85.32 84.26	65.16 65.33 64.95 64.38	- - -

* Dom-Spec: domain-specific bi-LSTM

* Dom-Gen: domain-general bi-LSTM

* Dom-Gen-Adv: domain-general bi-LSTM with adversarial learning

Conclusions

- We propose applying domain adversarial training in learning cross-domain common features and representations for slot filling task in SLU
- We show the benefits of applying domain adversarial learning in achieving advanced slot filling F1 scores.
- Future directions
 - Perform adversarial learning with sequence level optimization on slot labels (e.g. by adding a CRF layer on top)
 - Extend SLU model to end-to-end dialogue modeling (poster #7)

Thanks!