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Abstract

In this work, we propose an adversarial
learning method for reward estimation in
reinforcement learning (RL) based task-
oriented dialog models. Most of the cur-
rent RL based task-oriented dialog sys-
tems require the access to a reward signal
from either user feedback or user ratings.
Such user ratings, however, may not al-
ways be consistent or available in practice.
Furthermore, online dialog policy learning
with RL typically requires a large number
of queries to users, suffering from sample
efficiency problem. To address these chal-
lenges, we propose an adversarial learn-
ing method to learn dialog rewards directly
from dialog samples. Such rewards are
further used to optimize the dialog policy
with policy gradient based RL. In the eval-
uation in a restaurant search domain, we
show that the proposed adversarial dialog
learning method achieves advanced dialog
success rate comparing to strong baseline
methods. We further discuss the covariate
shift problem in online adversarial dialog
learning and show how we can address that
with partial access to user feedback.

1 Introduction

Task-oriented dialog systems are designed to as-
sist user in completing daily tasks, such as mak-
ing reservations and providing customer support.
Comparing to chit-chat systems that are usu-
ally modeled with single-turn context-response
pairs (Li et al., 2016; Serban et al., 2016), task-
oriented dialog systems (Young et al., 2013;
Williams et al., 2017) involve retrieving informa-
tion from external resources and reasoning over
multiple dialog turns. This makes it especially im-

portant for a system to be able to learn interac-
tively from users.

Recent efforts on task-oriented dialog systems
focus on learning dialog models from a data-
driven approach using human-human or human-
machine conversations. Williams et al. (2017)
designed a hybrid supervised and reinforcement
learning end-to-end dialog agent. Dhingra et
al. (2017) proposed an RL based model for infor-
mation access that can learn online via user inter-
actions. Such systems assume the model has ac-
cess to a reward signal at the end of a dialog, either
in the form of a binary user feedback or a con-
tinuous user score. A challenge with such learn-
ing systems is that user feedback may be inconsis-
tent (Su et al., 2016) and may not always be avail-
able in practice. Further more, online dialog pol-
icy learning with RL usually suffers from sample
efficiency issue (Su et al., 2017), which requires an
agent to make a large number of feedback queries
to users.

To reduce the high demand for user feedback
in online policy learning, solutions have been pro-
posed to design or to learn a reward function that
can be used to generate a reward in approxima-
tion to a user feedback. Designing a good re-
ward function is not easy (Walker et al., 1997) as
it typically requires strong domain knowledge. El
Asri et al. (2014) proposed a learning based re-
ward function that is trained with task completion
transfer learning. Su et al. (2016) proposed an
online active learning method for reward estima-
tion using Gaussian process classification. These
methods still require annotations of dialog ratings
by users, and thus may also suffer from the rating
consistency and learning efficiency issues.

To address the above discussed challenges, we
investigate the effectiveness of learning dialog re-
wards directly from dialog samples. Inspired by
the success of adversarial training in computer vi-



sion (Denton et al., 2015) and natural language
generation (Li et al., 2017a), we propose an ad-
versarial learning method for task-oriented dialog
systems. We jointly train two models, a gener-
ator that interacts with the environment to pro-
duce task-oriented dialogs, and a discriminator
that marks a dialog sample as being successful
or not. The generator is a neural network based
task-oriented dialog agent. The environment that
the dialog agent interacts with is the user. Qual-
ity of a dialog produced by the agent and the user
is measured by the likelihood that it fools the dis-
criminator to believe that the dialog is a successful
one conducted by a human agent. We treat dia-
log agent optimization as a reinforcement learning
problem. The output from the discriminator serves
as a reward to the dialog agent, pushing it towards
completing a task in a way that is indistinguishable
from how a human agent completes it.

In this work, we discuss how the adversarial
learning reward function compares to designed re-
ward functions in learning a good dialog policy.
Our experimental results in a restaurant search do-
main show that dialog agents that are optimized
with the proposed adversarial learning method
achieve advanced task success rate comparing to
strong baseline methods. We discuss the impact
of the size of annotated dialog samples to the ef-
fectiveness of dialog adversarial learning. We fur-
ther discuss the covariate shift issue in interactive
adversarial learning and show how we can address
that with partial access to user feedback.

2 Related Work

Task-Oriented Dialog Learning Popular ap-
proaches in learning task-oriented dialog systems
include modeling the task as a partially observable
Markov Decision Process (POMDP) (Young et al.,
2013). Reinforcement learning can be applied in
the POMDP framework to learn dialog policy on-
line by interacting with users (Gašić et al., 2013).
Recent efforts have been made in designing end-
to-end solutions (Williams and Zweig, 2016; Liu
and Lane, 2017a; Li et al., 2017b; Liu et al., 2018)
for task-oriented dialogs. Wen et al. (2017) de-
signed a supervised training end-to-end neural dia-
log model with modularly connected components.
Bordes and Weston (2017) proposed a neural di-
alog model using end-to-end memory networks.
These models are trained offline using fixed di-
alog corpora, and thus it is unknown how well

the model performance generalizes to online user
interactions. Williams et al. (2017) proposed a
hybrid code network for task-oriented dialog that
can be trained with supervised and reinforcement
learning. Dhingra et al. (2017) proposed an RL
dialog agent for information access. Such models
are trained against rule-based user simulators. A
dialog reward from the user simulator is expected
at the end of each turn or each dialog.

Dialog Reward Modeling Dialog reward es-
timation is an essential step for policy optimiza-
tion in task-oriented dialogs. Walker et al. (1997)
proposed PARADISE framework in which user
satisfaction is estimated using a number of dia-
log features such as number of turns and elapsed
time. Yang et al. (2012) proposed a collabora-
tive filtering based method in estimating user sat-
isfaction in dialogs. Su et al. (2015) studied us-
ing convolutional neural networks in rating dia-
log success. Su et al. (2016) further proposed an
online active learning method based on Gaussian
process for dialog reward learning. These methods
still require various levels of annotations of dia-
log ratings by users, either offline or online. On
the other side of the spectrum, Paek and Pieraccini
(2008) proposed inferring a reward directly from
dialog corpora with inverse reinforcement learn-
ing (IRL) (Ng et al., 2000). However, most of the
IRL algorithms are very expensive to run (Ho and
Ermon, 2016), requiring reinforcement learning in
an inner loop. This hinders IRL based dialog re-
ward estimation methods to scale to complex dia-
log scenarios.

Adversarial Networks Generative adversar-
ial networks (GANs) (Goodfellow et al., 2014)
have recently been successfully applied in com-
puter vision and natural language generation (Li
et al., 2017a). The network training process is
framed as a game, in which people train a gen-
erator whose job is to generate samples to fool a
discriminator. The job of a discriminator is to dis-
tinguish samples produced by the generator from
the real ones. The generator and the discrimina-
tor are jointly trained until convergence. GANs
were firstly applied in image generation and re-
cently used in language tasks. Li et al. (2017a)
proposed conducting adversarial learning for re-
sponse generation in open-domain dialogs. Yang
et al. (2017) proposed using adversarial learning in
neural machine translation. The use of adversarial
learning in task-oriented dialogs has not been well



studied. Peng et al. (2018) recently explored us-
ing adversarial loss as an extra critic in addition
to the main reward function based on task comple-
tion. This method still requires prior knowledge of
a user’s goal, which can be hard to collect in prac-
tice, in defining the completion of a task. Our pro-
posed method uses adversarial reward as the only
source of reward signal for policy optimization in
addressing this challenge.

3 Adversarial Learning for
Task-Oriented Dialogs

In this section, we describe the proposed adver-
sarial learning method for policy optimization in
task-oriented neural dialog models. Our objective
is to learn a dialog agent (i.e. the generator, G)
that is able to effectively communicate with a user
over a multi-turn conversation to complete a task.
This can be framed as a sequential decision mak-
ing problem, in which the agent generates a best
action to take at every dialog turn given the dialog
context. The action can be in the form of either
a dialog act (Henderson et al., 2013) or a natural
language utterance. We study on dialog act level
in this work. Let Uk and Ak represent the user in-
put and agent outputs (i.e. the agent act ak and the
slot-value predictions) at turn k. Given the current
user input Uk, the agent estimates the user’s goal
and select a best action ak to take conditioning on
the dialog history.

In addition, we want to learn a reward function
(i.e. the discriminator, D) that is able to provide
guidance to the agent for learning a better policy.
We expect the reward function to give a higher re-
ward to the agent if the conversation it had with the
user is closer to how a human agent completes the
task. Output of the reward function is the prob-
ability of a given dialog being successfully com-
pleted. We train the reward function by forcing it
to distinguish successful dialogs and dialogs con-
ducted by the machine agent. At the same time,
we also update the dialog agent parameters with
policy gradient based reinforcement learning us-
ing the reward produced by the reward function.
We keep updating the dialog agent and the reward
function until the discriminator can no longer dis-
tinguish dialogs from a human agent and from a
machine agent. In the subsequent sections, we de-
scribe in detail the design of our dialog agent and
reward function, and the proposed adversarial dia-
log learning method.

LSTM dialogue state, sk

Query results encoding, Ek

Slot value probs for 
each slot type, vk

System outputs 
at turn k - 1, Ak-1

User input encoding 
at turn k, Uk

Policy network 

System action 
at turn k, ak

Figure 1: Design of the task-oriented neural dia-
log agent.

3.1 Neural Dialog Agent

The generator is a neural network based task-
oriented dialog agent. The model architecture is
shown in Figure 1. The agent uses an LSTM re-
current neural network to model the sequence of
turns in a dialog. At each turn, the agent takes a
best system action conditioning on the current di-
alog state. A continuous form dialog state is main-
tained in the LSTM state sk. At each dialog turn
k, user input Uk and previous system output Ak−1
are firstly encoded to continuous representations.
The user input can either in the form of a dialog
act or a natural language utterance. We use dialog
act form user input in our experiment. The dialog
act representation is obtained by concatenating the
embeddings of the act and the slot-value pairs. If
natural language form of input is used, we can en-
code the sequence of words using a bidirectional
RNN and take the concatenation of the last for-
ward and backward states as the utterance repre-
sentation, similar to (Yang et al., 2016) and (Liu
and Lane, 2017a). With the user input Uk and
agent input Ak−1, the dialog state sk is updated
from the previous state sk−1 by:

sk = LSTMG(sk−1, [Uk, Ak−1]) (1)

Belief Tracking Belief tracking maintains the
state of a conversation, such as a user’s goals, by
accumulating evidence along the sequence of dia-
log turns. A user’s goal is represented by a list of
slot-value pairs. The belief tracker updates its es-
timation of the user’s goal by maintaining a proba-
bility distribution P (lmk ) over candidate values for
each of the tracked goal slot type m ∈ M . With
the current dialog state sk, the probability over



candidate values for each of the tracked goal slot
is calculated by:

P (lmk |U≤k, A<k) = SlotDistm(sk) (2)

where SlotDistm is a single hidden layer MLP
with softmax activation over slot type m ∈M .

Dialog Policy We model the agent’s policy
with a deep neural network. Following the pol-
icy, the agent selects the next action in response
to the user’s input based on the current dialog
state. In addition, information retrieved from ex-
ternal resources may also affects the agent’s next
action. Therefore, inputs to our policy module are
the current dialog state sk, the probability distri-
bution of estimated user goal slot values vk, and
the encoding of the information retrieved from ex-
ternal sources Ek. Here instead of encoding the
actual query results, we encode a summary of the
retrieved items (i.e. count and availability of the
returned items). Based on these inputs, the policy
network produces a probability distribution over
the next system actions:

P (ak | U≤k, A<k, E≤k) = PolicyNet(sk, vk, Ek)
(3)

where PolicyNet is a single hidden layer MLP
with softmax activation over all system actions.

3.2 Dialog Reward Estimator

The discriminator model is a binary classifier that
takes in a dialog with a sequence of turns and out-
puts a label indicating whether the dialog is a suc-
cessful one or not. The logistic function returns
a probability of the input dialog being success-
ful. The discriminator model design is as shown in
Figure 2. We use a bidirectional LSTM to encode
the sequence of turns. At each dialog turn k, input
to the discriminator model is the concatenation of
(1) encoding of the user input Uk, (2) encoding of
the query result summary Ek, and (3) encoding of
agent output Ak. The discriminator LSTM output
at each step k, hk, is a concatenation of the for-
ward LSTM output

−→
hk and the backward LSTM

output
←−
hk: hk = [

−→
hk,
←−
hk].

Once obtaining the discriminator LSTM state
outputs {h1, . . . , hK}, we experiment with four
different methods in combining these state outputs
to generated the final dialog representation d for
the binary classifier:

BiLSTM-last Produce the final dialog repre-
sentation d by concatenating the last LSTM state

E1
U1

x x xx. . . . . . 

x

x
x

. . . . . .

Max Pooling

D(d)

A1 E2U2 A2 EKUK AK

d

. . . . . .

Figure 2: Design of the dialog reward estimator:
Bidirectional LSTM with max pooling.

outputs from the forward and backward directions:
d = [

−→
hK ,
←−
h1]

BiLSTM-max Max-pooling. Produce the fi-
nal dialog representation d by selecting the max-
imum value over each dimension of the LSTM
state outputs.

BiLSTM-avg Average-pooling. Produce the
final dialog representation d by taking the average
value over each dimension of the LSTM state out-
puts.

BiLSTM-attn Attention-pooling. Produce
the final dialog representation d by taking the
weighted sum of the LSTM state outputs. The
weights are calculated with attention mechanism:

d =

K∑
k=1

αkhk (4)

and

αk =
exp(ek)∑K
t=1 exp(et)

, ek = g(hk) (5)

g a feed-forward neural network with a single out-
put node. Finally, the discriminator produces a
value indicating the likelihood the input dialog be-
ing a successful one:

D(d) = σ(Wod+ bo) (6)

where Wo and bo are the weights and bias in the
discriminator output layer. σ is a logistic function.

3.3 Adversarial Model Training
Once we obtain a dialog sample initiated by the
agent and a dialog reward from the reward func-
tion, we optimize the dialog agent using REIN-
FORCE (Williams, 1992) with the given reward.



The reward D(d) is only received at the end of a
dialog, i.e. rK = D(d). We discount this final re-
ward with a discount factor γ ∈ [0, 1) to assign a
rewardRk to each dialog turn. The objective func-
tion can thus be written as Jk(θG) = EθG [Rk] =

EθG
[∑K

t=k γ
t−krt − V (sk)

]
, with rk = D(d) for

k = K and rk = 0 for k < K. V (sk) is the state
value function which serves as a baseline value.
The state value function is a feed-forward neu-
ral network with a single-node value output. We
optimize the generator parameter θG to maximize
Jk(θG). With likelihood ratio gradient estimator,
the gradient of Jk(θG) can be derived with:

∇θGJk(θG) = ∇θGEθG [Rk]

=
∑
ak∈A

G(ak|·)∇θG logG(ak|·)Rk

= EθG [∇θG logG(ak|·)Rk]
(7)

where G(ak|·) = G(ak|sk, vk, Ek; θG). The ex-
pression above gives us an unbiased gradient es-
timator. We sample agent action ak following a
softmax policy at each dialog turn and compute
the policy gradient. At the same time, we update
the discriminator parameter θD to maximize the
probability of assigning the correct labels to the
successful dialog from human demonstration and
the dialog conducted by the machine agent:

∇θD
[
Ed∼θdemo

[log(D(d))] +

Ed∼θG [log(1−D(d))]
] (8)

We continue to update both the dialog agent and
the reward function via dialog simulation or real
user interaction until convergence.

4 Experiments

4.1 Dataset
We use data from the second Dialog State Track-
ing Challenge (DSTC2) (Henderson et al., 2014)
in the restaurant search domain for our model
training and evaluation. We add entity infor-
mation to each dialog sample in the original
DSTC2 dataset. This makes entity information a
part of the model training process, enabling the
agent to handle entities during interactive evalu-
ation with users. Different from the agent ac-
tion definition used in DSTC2, actions in our
system are produced by concatenating the act

Algorithm 1 Adversarial Learning for Task-
Oriented Dialog

1: Required: dialog corpus Sdemo, user simual-
tor U , generator G, discriminator D

2: Pretrain a dialog agent (i.e. the generator) G
on dialog corpora Sdemo with MLE

3: Simulate dialogs Ssimu between U and G
4: Sample successful dialogs S(+) and random

dialogs S(−) from {Sdemo, Ssimu}
5: Pretrain a reward function (i.e. the discrimi-

nator) D with S(+) and S(−) . eq 8
6: for number of training iterations do
7: for G-steps do
8: Simulate dialogs Sb between U and G
9: Compute reward r for each dialog in

Sb with D . eq 6
10: Update G with reward r . eq 7
11: end for
12: for D-steps do
13: Sample dialogs S(b+) from S(+)

14: Update D with S(b+) and Sb (with Sb
as negative examples) . eq 8

15: end for
16: end for

and slot types in the original dialog act output
(e.g. “confirm(food = italian)” maps to
“confirm food”). The slot values (e.g. italian)
are captured in the belief tracking outputs. Table
1 shows the statistics of the dataset used in our ex-
periments.

# of train/dev/test dialogs 1612/506/ 1117
# of dialog turns in average 7.88
# of slot value options

Area 5
Food 91
Price range 3

Table 1: Statistics of DSTC2 dataset.

4.2 Training Settings
We use a user simulator for our interactive train-
ing and evaluation with adversarial learning. In-
stead of using a rule-based user simulator as in
many prior work (Zhao and Eskenazi, 2016; Peng
et al., 2017), in our study we use a model-based
simulator trained on DSTC2 dataset. We follow
the design and training procedures of (Liu and
Lane, 2017b) in building the model-based simu-
lator. The stochastic policy used in the simula-



tor introduces additional diversity in user behavior
during dialog simulation.

Before performing interactive adversarial learn-
ing with RL, we pretrain the dialog agent and the
discriminative reward function with offline super-
vised learning on DSTC2 dataset. We find this
being helpful in enabling the adversarial policy
learning to start with a good initialization. The
dialog agent is pretrained to minimize the cross-
entropy losses on agent action and slot value pre-
dictions. Once we obtain a supervised training
dialog agent, we simulate dialogs between the
agent and the user simulator. These simulated di-
alogs together with the dialogs in DSTC2 dataset
are then used to pretrain the discriminative re-
ward function. We sample 500 successful dialogs
as positive examples, and 500 random dialogs as
negative examples in pretraining the discrimina-
tor. During dialog simulation, a dialog is marked
as successful if the agent’s belief tracking out-
puts fully match the informable (Henderson et al.,
2013) user goal slot values, and all user requested
slots are fulfilled. This is the same evaluation cri-
teria as used in (Wen et al., 2017) and (Liu and
Lane, 2017b). It is important to note that such
dialog success signal is usually not available dur-
ing real user interactions, unless we explicitly ask
users to provide this feedback.

During supervised pretraining, for the dialog
agent we use LSTM with a state size of 150. Hid-
den layer size for the policy network MLP is set as
100. For the discriminator model, a state size of
200 is used for the bidirectional LSTM. We per-
form mini-batch training with batch size of 32 us-
ing Adam optimization method (Kingma and Ba,
2014) with initial learning rate of 1e-3. Dropout
(p = 0.5) is applied during model training to pre-
vent the model from over-fitting. Gradient clip-
ping threshold is set to 5.

During interactive learning with adversarial RL,
we set the maximum allowed number of dialog
turns as 20. A simulation is force to terminated af-
ter 20 dialog turns. We update the model with ev-
ery mini-batch of 25 samples. Dialog rewards are
calculated by the discriminative reward function.
Reward discount factor γ is set as 0.95. These re-
wards are used to update the agent model via pol-
icy gradient. At the same time, this mini-batch of
simulated dialogs are used as negative examples to
update the discriminator.

4.3 Results and Analysis

In this section, we show and discuss our empir-
ical evaluation results. We first compare dialog
agent trained using the proposed adversarial re-
ward to those using human designed reward and
using oracle reward. We then discuss the impact
of discriminator model design and model pretrain-
ing on the adversarial learning performance. Last
but not least, we discuss the potential issue of co-
variate shift during interactive adversarial learning
and show how we address that with partial access
to user feedback.

4.3.1 Comparison to Other Reward Types
We first compare the performance of dialog agent
using adversarial reward to those using designed
reward and oracle reward on dialog success rate.
Designed reward refers to reward function that is
designed by humans with domain knowledge. In
our experiment, based on the dialog success crite-
ria defined in section 4.2, we design the following
reward function for RL policy learning:

• +1 for each informable slot that is correctly
estimated by the agent at the end of a dialog.

• If ALL informable slots are tracked correctly,
+1 for each requestable slot successfully han-
dled by the agent.

In addition to the comparison to human de-
signed reward, we further compare to the case of
using oracle reward during agent policy optimiza-
tion. Using oracle reward refers to having access
to the final dialog success status. We apply a re-
ward of +1 for a successful dialog, and a reward
of 0 for a failed dialog. Performance of the agent
using oracle reward serves as an upper-bound for
those using other types of reward. For the learning
with adversarial rewards, we use BiLSTM-max as
the discriminator model. During RL training, we
normalize the rewards produced by different re-
ward functions.

Figure 3 show the RL learning curves for mod-
els trained using different reward functions. The
dialog success rate at each evaluation point is cal-
culated by averaging over the success status of
1000 dialog simulations at that point. The pre-
train baseline in the figure refers to the super-
vised pretraining model. This model does not get
updated during interactive learning, and thus the
curve stays flat during the RL training cycle. As



Figure 3: RL policy optimization performance
comparing with adversarial reward, designed re-
ward, and oracle reward.

shown in these curves, all the three types of re-
ward functions lead to improved dialog success
rate along the interactive learning process. The
agent trained with designed reward falls behind the
agent trained with oracle reward by a large margin.
This shows that the reward designed with domain
knowledge may not fully align with the final evalu-
ation metric. Designing a reward function that can
provide an agent enough supervision signal and
also well aligns the final system objective is not
a trivial task (Popov et al., 2017). In practice, it
is often difficult to exactly specify what we expect
an agent to do, and we usually end up with sim-
ple and imperfect measures. In our experiment,
agent using adversarial reward achieves a 7.4%
improvement on dialog success rate over the su-
pervised pretraining baseline at the end of 6000 in-
teractive dialog learning episodes, outperforming
that using the designed reward (4.2%). This shows
the advantage of performing adversarial training in
learning directly from expert demonstrations and
in addressing the challenge of designing a proper
reward function. Another important point we ob-
serve in our experiments is that RL agents trained
with adversarial reward, although enjoy higher
performance in the end, suffer from larger vari-
ance and instability on model performance during
the RL training process, comparing to agents us-
ing human designed reward. This is because dur-
ing RL training the agent interfaces with a moving
target, rather than a fixed objective measure as in
the case of using the designed reward or oracle re-
ward. The model performance gradually becomes
stabilized when both the dialog agent and the re-
ward model are close to convergence.

4.3.2 Impact of Discriminator Model Design
We study the impact of different discriminator
model designs on the adversarial learning perfor-
mance. We compare the four pooling methods de-
scribed in section 3.2 in producing the final dialog
representation. Table 2 shows the offline evalua-
tion results on 1000 simulated test dialog samples.
Among the four pooling methods, max-pooling
on bidirectional LSTM outputs achieves the best
classification accuracy in our experiment. Max-
pooling also assigns the highest probability to suc-
cessful dialogs in the test set comparing to other
pooling methods. Attention-pooling based LSTM
model achieves the lowest performance across all
the three offline evaluation metrics in our study.
This is probably due to the limited number of
training samples we used in pretraining the dis-
criminator. Learning good attentions usually re-
quires more data samples and the model may thus
overfit the small training set. We observe sim-
ilar trends during interactive learning evaluation
that the attention-based discriminator leads to di-
vergence of policy optimization more often than
the other three pooling methods. Max-pooling dis-
criminator gives the most stable performance dur-
ing our interactive RL training.

Prediction Success Fail
Model Accuracy Prob. Prob.
BiLSTM-last 0.674 0.580 0.275
BiLSTM-max 0.706 0.588 0.272
BiLSTM-avg 0.688 0.561 0.268
BiLSTM-attn 0.652 0.541 0.285

Table 2: Performance of different discriminator
model design, on prediction accuracy and proba-
bilities assigned to successful and failed dialogs.

4.3.3 Impact of Annotated Dialogs for
Discriminator Training

Annotating dialogs for model training requires ad-
ditional human efforts. We investigate the impact
of the size of the annotated dialog samples on dis-
criminator model training. The amount of anno-
tated dialogs required for learning a good discrim-
inator depends mainly on the complexity of a task.
Given the rather simple nature of the slot filling
based DSTC2 restaurant search task, we experi-
ment with annotating 100 to 1000 discriminator
training samples. We use BiLSTM-max discrimi-
nator model in these experiments. The adversarial



Figure 4: Impact of discriminator training sample
size on RL dialog learning performance.

RL training curves with different levels of discrim-
inator training samples are shown in Figure 4. As
these results illustrate, with 100 annotated dialogs
as positive samples for discriminator training, the
discriminator is not able to produce dialog rewards
that are useful in learning a good policy. Learning
with 250 positive samples does not lead to con-
crete improvement on dialog success rate neither.
With the growing number of annotated samples,
the dialog agent becomes more likely to learn a
better policy, resulting in higher dialog success
rate at the end of the interactive learning sessions.

4.3.4 Partial Access to User Feedback
A potential issue with RL based interactive adver-
sarial learning is the covariate shift (Ross and Bag-
nell, 2010; Ho and Ermon, 2016) problem. Part
of the positive examples for discriminator training
are generated based on the supervised pretraining
dialog policy before the interactive learning stage.
During interactive RL training, the agent’s policy
gets updated. The newly generated dialog sam-
ples based on the updated policy may be equally
good comparing to the initial set of positive di-
alogs, but they may look very different. In this
case, the discriminator is likely to give these di-
alogs low rewards as the pattern presented in these
dialogs is different to what the discriminator is
initially trained on. The agent will thus be dis-
couraged to produce such type of successful di-
alogs in the future with these negative rewards.
To address such covariate shift issue, we design
a DAgger (Ross et al., 2011) style imitation learn-
ing method to the dialog adversarial learning. We
assume that during interactive learning with users,
occasionally we can receive feedback from users

Figure 5: Addressing covariate shift in online ad-
versarial dialog learning with partial access to user
feedback.

indicating the quality of the conversation they had
with the agent. We then add those dialogs with
good feedback as additional training samples to
the pool of positive dialogs used in discrimina-
tor model training. With this, the discriminator
can learn to assign high rewards to such good di-
alogs in the future. In our empirical evaluation,
we experiment with the agent receiving positive
feedback 10% and 20% of the time during its in-
teraction with users. The experimental results are
shown in Figure 5. As illustrated in these curves,
the proposed DAgger style learning method can
effectively improve the dialog adversarial learning
with RL, leading to higher dialog success rate.

5 Conclusions

In this work, we investigate the effectiveness
of applying adversarial training in learning task-
oriented dialog models. The proposed method
is an attempt towards addressing the rating con-
sistency and learning efficiency issues in online
dialog policy learning with user feedback. We
show that with limited number of annotated di-
alogs, the proposed adversarial learning method
can effectively learn a reward function and use that
to guide policy optimization with policy gradient
based reinforcement learning. In the experiment
in a restaurant search domain, we show that the
proposed adversarial learning method achieves ad-
vanced dialog success rate comparing to baseline
methods using other forms of reward. We further
discuss the covariate shift issue during interactive
adversarial learning and show how we can address
it with partial access to user feedback.
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